
Writing code for a wet-lab
audience
Lyuba V. Bozhilova
Department of Clinical Neurosciences and MRC Mitochondrial Biology Unit,
University of Cambridge
An Open Science Workshop, 17 October 2022

R’s biggest challenge is that most
R users are not programmers.
Hadley Wickham, Advanced R (2019)

Why share code (with “non-coders”)?

For my sake, but also for the benefit of others:
• so they can better understand the work, and
• so they can use it and build on it.

In my case, “others” often have limited experience and little training and
support for writing code.
They can follow a software tutorial, but won’t know what a pull request is.

What the past year has taught reminded me

Code is like maths: sometimes nothing is obvious and everything is scary.
We can choose to meet people where they are:
• Conventions are not universal.
• Shiny stuff can be intimidating.

Good code is good for everyone:
• Modular code improves understanding.
• Good coding style is not just for pros.

Nothing is ever obvious

Things that routinely give people a headache:
• OS incompatibility,
• not installing required libraries,
• not updating anything, ever,
• not running code in the right directory,
• not knowing how to read in data.

This stuff is for the README, or for a small set-up script. And always
provide (and describe!) correctly formatted input data.

Docs and errors spook people

I used to find Stack Overflow confusing and unpleasant. Many of my
colleagues still do.
Reading documentation and parsing error messages is a learnt skill, and
your audience might not be there.
The right person to test your code should know a lot less about it:
• someone from a different field,
• a student… or a patient supervisor!

Plain scripts, not (just) notebooks

Most people do not know what to do with a .ipynb or .qmd file
extension.
You should always assume they will not read the free-form text either.
If you are going to share a notebook, share a heavily commented plain
script version of your code as well.

Inline documentation

If you have something to say, say it in the comments.
• Give an overview of the script at the start.
• Split scripts into sections.

#----- Parse data
#----- Calculate ABC
#----- Plot DEF

• Explain important steps within sections.
To test GHI, we perform JKL.

• Copy relevant expected output, e.g. from summary() calls or tests.

Modular code

Modular code is not just more adaptable, it is also clearer.
• Make the code itself modular.
• Split code
• across files,
• across sections within a file, and
• in subsections or paragraphs within sections.

• Save and reload intermediate states, within reason.

(Not) following a style guide

I like the tidyverse style guide, but this does not mean I follow it
religiously.
• Number scripts in order of execution, e.g. 00-plot-setup.R, 01-data-
preproc.R, …, 05-figures.R.
• Give output the same prefix as the script it comes from, e.g. 01-
summary-stats.Rdata, 05-fig2.jpg.
• Include data types in variable names (e.g. oocytes_df).

To sum(up)

Code, like maths, can freak people out, and we should be aware of that
when writing for a less experienced audience.
We can adapt how we present code and documentation to formats they
are more comfortable with (e.g. scripts with inline comments).
A lot of good code practice helps everyone, regardless of experience (e.g.
writing modular code with consistent style).

Thanks!

• Patrick Chinnery’s Mitochondrial Genomics lab, especially
• Tom Barton-Owen
• Fei Gao
• Malwina Prater
• Shafiqur Rahman

• Laura Kremer (Karolinska Institutet)
• The Data Championship Programme

Bioinformatics @ Patrick Chinnery’s lab
lb925@cam.ac.uk
GitHub & Twitter : @lbozhilova

mailto:lb925@cam.ac.uk

